Celestial mechanics - state exams  

Two-body problem. Central orbits. General integrals of motion. Conservation laws. Relationship between integral constants and orbital parameters. Kepler’s laws. Gauss’s constant, astronomical unit, masses of planets. Energy integral and limits of velocities. Elliptical, parabolic and hyperbolic motion. Solution of Kepler’s equation. Orbit in space. Types of orbits in the Solar system. Ephemeris calculation. Time series. Fundamentals of orbit determination. N-body problem. General integrals. Relative coordinates, concept of preturbations, disturbing function. Virial Theorem. General integrals of the n-body motion. Disturbing function. Perturbed orbits. Small impulses and the change of orbital elements. Lagrange's planetary equations, 1-st order solution. Introduction to resonances. Restricted three-body problem. Jacobi integral. Lagrangian equilibrium points, stable and unstable solution. Tisserand invariant. Gravitational spheres. Numerical solution of n-body problem, Cowell and Encke type. Gravitational potential of a finite body. Perturbations in satellite motion. Outcome: The students will proof the understanding of two and n body problem.
Presential
English
Celestial mechanics - state exams
English

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or HaDEA. Neither the European Union nor the granting authority can be held responsible for them. The statements made herein do not necessarily have the consent or agreement of the ASTRAIOS Consortium. These represent the opinion and findings of the author(s).