Semester 1: Physical foundaions
Thermodynamics: ideal gas, parial ionisaion, Saha equaion. Degeneraion of mater. Nuclear reacions. Basics of luid mechanics and magnetohydrodynamics. Linear perturbaions, waves in homogeneous media, perturbaions in straiied media. Turbulence and convecion. Radiaive transfer equaion
Semester 2: Stellar structure and evoluion
Applicaion of luid mechanics to stars. Thermodynamics of stellar plasma. Radiaive and convecive transfer of energy. Simpliied models, polytropic spheres. Numerical methods in the modelling of steallr structure and evoluion. Stability of stars: theory of linear pulsaion. Basics of numerical modelling of nonlinear pulsaions. Introducion to asteroseismology. Stellar evoluion: energy producion and nucleosynthesis. Phases of stellar evoluion.
Semester 3: Radiaive transfer
Saha equaion, Fowler-Milne theory of stellar spectra. Radiaive equilibrium in stellar atmospheres. Transfer equaion. Limb darkening. Theory of Fraunhofer lines. Mechanisms of absorpion, damping, Doppler broadining. Theory of the growth curve, determinaion of stellar composiion. Nontehrmal radiaion processes: synchrotron radiaion, nonthermal bremsstrahlung, comptonisaion.
Semester 4: Difuse matter
Radiative transfer and raditaive processes in difuse media. Interstellar molecules. The luid dynamics of difuse mater, shock waves. Interstellar dust and gas. Interstellar magneic ields. Interstellar medium in the Milky Way Galaxy. Star formaion. Planetary nebulae and supernove remnants.