Internal combustion engines II  

Learning Outcomes After successful course completion, the students will be able to solve complex design and operational problems for Internal Combustion Enggines, via their familiarization with modern modeling approaches. They will be in the position to study critically the technical literature and evaluate technologies of improving the energy and environmental performance of engines. General Competences Apply knowledge in practice Retrieve, analyse and synthesise data and information, with the use of necessary technologies Adapt to new situations Make decisions Work autonomously Work in teams Work in an international context Work in an interdisciplinary team Generate new research ideas Course Content (Syllabus) Engine cycle simulation (process analysis) using filling-emptying models. Thermodynamic analysis and cycle efficiency calculation. Modeling of flow in inlet/exhaust valves. Combustion models. Pollutant formation prediction via two-zone combustion modeling. Compressible flow and gas dynamics analysis in inlet and exhaust pipes. Turbocharger thermodynamic analysis, modeling and practical aspects. Intercooling. Modeling of cooling and lubrication systems. Simulation examples of steady-state and transient performance of Diesel and gasoline engines. Simulation applications using commercial software tools and model validation.
Presential
English
Internal combustion engines II
English

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or HaDEA. Neither the European Union nor the granting authority can be held responsible for them. The statements made herein do not necessarily have the consent or agreement of the ASTRAIOS Consortium. These represent the opinion and findings of the author(s).