. "Astrochemistry"@en . . "3" . "The space between the stars is not empty but filled with a very dilute gas with extremely low densities and temperatures, providing a unique laboratory with conditions not normally encountered on Earth. A surprisingly rich chemistry occurs in these so-called interstellar clouds, as evidenced by the discovery of more than 200 different molecules. Some of these species were found in space before they were identified in a laboratory on Earth. How are these molecules formed? Where are they found and how do astronomers identify them? How do their abundances differ from place to place and what does this tell us about the structure of the region? How do the abundances evolve from cold clouds to planet-forming disks, where they can form the basis for prebiotic species?\n\nThe outline of the course is as follows:\n\nBasic principles of gas-phase and gas-grain chemical reactions\nChemistry in the early Universe\nChemistry in diffuse and translucent clouds, and in photon-dominated regions\nChemistry in shocks\nEvolution of molecular abundances from dark pre-stellar cores to star-forming regions\nChemistry in protoplanetary disks and links with comets\n\nOutcome:\nThe student will gain relevant background information that will enable him/her to follow the current literature on Astrochemistry and to do research in this field. The student will also acquire hands-on experience with running molecular excitation and chemical network codes, and make predictions for ALMA." . . "Presential"@en . "TRUE" . . "Astrochemistry"@en . . . . . "Master of Astronomy and Data Science"@en . . "https://www.universiteitleiden.nl/en/education/study-programmes/master/astronomy/astronomy-and-data-science" . "120"^^ . "Presential"@en . "In the master’s specialisation Astronomy and Data Science you focus on development and application of new data-mining technologies, fully embracing modern astronomy as a data rich science. You combine the research curriculum in Astronomy with in-depth training in Computer Science.\n\nThe Astronomy and Data Science master’s programme is built on world-class computational astrophysics research as well as hightech industry expertise. It covers a wide range of research areas studying complex astronomical phenomena, including radiative transfer, computation of dynamical internal galaxy structures and hydrodynamical modeling of galaxy formation and evolution of the intergalactic medium.\n\nThis two-year Astronomy and Data Sicence programme uniquely combines advanced Astronomy courses of the Leiden Observatory and relevant courses from the Computer Science master’s programme of the Leiden Institute of Advanced Computer Science including advanced data mining and neural networks. To this end, the Leiden Observatory offers sophisticated computational facilities ranging from local computer clusters to high-performance systems at national and international computing centers.\n\nOutcome:\nDuring the programme, you learn to perform academically sound research and evaluate scientific information independently and critically. Without exception, you actively participate in current research within the institute and are individually supervised by our international scientific staff. Students with a Leiden degree in Astronomy become strong communicators and collaborators and can easily operate in an international setting. You will acquire extensive astronomical research experience and highly advanced analytical and problem solving skills."@en . . . . . . "2"@en . "FALSE" . . "Master"@en . "Thesis" . "2314.00" . "Euro"@en . "19600.00" . "Mandatory" . "Most graduates holding a MSc degree in Astronomy from Leiden University find work in many different capacities, including:\n\n1. Research: universities, observatories, research institutes\n2. Industry and consultancy: ICT, R&D, telecom, high technology, aerospace\n3. Finance: banking, insurance, pension funds\n4. Public sector: governments, policy makers, high schools\n5. Science communication: journalism, popular writing, museums\n6. Typical jobs for Astronomy graduates include:\n\nScientific researcher (postdoc, research fellow, professor)\n1. R&D engineer\n2. Consultant\n3. Data scientist, statistician\n4. Policy advisor, public information officer (e.g. Ministry of Foreign Affairs)\n5. High school physics teacher\n6. Scientific editor for magazines, newspapers and other media\n7. Research at Leiden Observatory\n\nIf you want to get more deeply involved in research after graduating in Astronomy, consider pursuing a PhD at Leiden Observatory. If you have completed the Leiden master’s degree programme in Astronomy, you are directly eligible for admission to our PhD programme"@en . "no data" . "TRUE" . "Upstream"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .