. "Astronomical spectroscopy"@en . . "3" . "Astronomical observation is a subject combining astronomy, quantum mechanics, and experimental spectroscopy. To accurately interpret and optimize the knowledge and societal impact of the obtained telescope data in various spectral ranges, it is crucial to have a rigorous understanding of the principles of theoretical and laboratory works.\r\nIn this course, you will learn to understand and apply atomic and molecular spectroscopy in an astronomical context. The course covers the basics of absorption spectroscopy and the history of astronomical spectroscopy. You will learn how to interpret spectra and what is needed to simulate molecular spectra for electronic, vibrational, and rotational transitions. The course highlights the synergy between observational and laboratory spectroscopy in astronomical research.\r\nThis course starts with general principles of quantum mechanics, and from these derives the principles behind atomic and molecular spectroscopy of molecules commonly found in the interstellar medium. You will apply the newly learned theory to the spectral simulation using the Pgopher software and compare them with observational data. Finally, general laboratory spectroscopy will be introduced to demonstrate how a typical molecular spectrum is measured in fully controlled experimental conditions.\n\nOutcome:\nUpon completion of this course, you will be able to:\r\n1. Read spectroscopic notation, and interpret and simulate (interstellar) spectra\r\n2. Explain the origin of atomic and molecular spectra\r\n3. Reproduce and simulate the typical shape of molecular spectra\r\n4. Calculate/explain physical parameters from spectra\r\n5. Read and summarize the literature on spectroscopy with astronomical applications\r\n6. Explain solid state and gas phase spectra obtained in the laboratory" . . "Presential"@en . "FALSE" . . "Other Astronomy Kas"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Master of Astronomy and Data Science"@en . . "https://www.universiteitleiden.nl/en/education/study-programmes/master/astronomy/astronomy-and-data-science" . "120"^^ . "Presential"@en . "In the master’s specialisation Astronomy and Data Science you focus on development and application of new data-mining technologies, fully embracing modern astronomy as a data rich science. You combine the research curriculum in Astronomy with in-depth training in Computer Science.\n\nThe Astronomy and Data Science master’s programme is built on world-class computational astrophysics research as well as hightech industry expertise. It covers a wide range of research areas studying complex astronomical phenomena, including radiative transfer, computation of dynamical internal galaxy structures and hydrodynamical modeling of galaxy formation and evolution of the intergalactic medium.\n\nThis two-year Astronomy and Data Sicence programme uniquely combines advanced Astronomy courses of the Leiden Observatory and relevant courses from the Computer Science master’s programme of the Leiden Institute of Advanced Computer Science including advanced data mining and neural networks. To this end, the Leiden Observatory offers sophisticated computational facilities ranging from local computer clusters to high-performance systems at national and international computing centers.\n\nOutcome:\nDuring the programme, you learn to perform academically sound research and evaluate scientific information independently and critically. Without exception, you actively participate in current research within the institute and are individually supervised by our international scientific staff. Students with a Leiden degree in Astronomy become strong communicators and collaborators and can easily operate in an international setting. You will acquire extensive astronomical research experience and highly advanced analytical and problem solving skills."@en . . . . . . "2"@en . "FALSE" . . "Master"@en . "Thesis" . "2314.00" . "Euro"@en . "19600.00" . "Mandatory" . "Most graduates holding a MSc degree in Astronomy from Leiden University find work in many different capacities, including:\n\n1. Research: universities, observatories, research institutes\n2. Industry and consultancy: ICT, R&D, telecom, high technology, aerospace\n3. Finance: banking, insurance, pension funds\n4. Public sector: governments, policy makers, high schools\n5. Science communication: journalism, popular writing, museums\n6. Typical jobs for Astronomy graduates include:\n\nScientific researcher (postdoc, research fellow, professor)\n1. R&D engineer\n2. Consultant\n3. Data scientist, statistician\n4. Policy advisor, public information officer (e.g. Ministry of Foreign Affairs)\n5. High school physics teacher\n6. Scientific editor for magazines, newspapers and other media\n7. Research at Leiden Observatory\n\nIf you want to get more deeply involved in research after graduating in Astronomy, consider pursuing a PhD at Leiden Observatory. If you have completed the Leiden master’s degree programme in Astronomy, you are directly eligible for admission to our PhD programme"@en . "no data" . "TRUE" . "Upstream"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .