. "Planetary Science"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Exo-planets a: interiors and atmospheres"@en . . "3" . "We are in a unique time to study planets. Not only do we have space missions such as Cassini and Juno, which have led to a radical change in our knowledge of the giants in our solar system, but we also have an astonishing number of more than 4000 exoplanets that have been discovered in the last three decades. Each new exoplanet highlights a stunning diversity and impacts the perception and understanding of our own solar system. This course will provide an overview of our current theoretical understanding of the physical and chemical processes that occur in planets interiors and their atmospheres. This understanding is crucial to interpret observations, and to know where the field is moving for the developing of future instrumentation.\r\n\r\nThe detailed outline is:\r\n\r\nRadiative transfer in (exo)planet atmospheres\r\nChemistry in (exo)planet atmospheres\r\nPrinciples of fluid dynamics and applications to circulation in atmospheres\r\nInteraction between the planets and the host star: atmospheric escape\r\nInteriors or rocky planets\r\nInteriors of giant planets: inflation in hot-Jupiters\r\nInteractions between interiors and atmospheres: surface, ocean and volcanoes\r\nThe concept of habitability\n\nOutcome:\nUpon completion of this course, you will be able to:\r\n\r\nDistinguish the main physical and chemical processes that shape the atmospheres and interiors of (exo)planets.\r\nDiscuss and follow current literature in exoplanets\r\nUse state-of-the-art codes to model exoplanets interiors and atmospheres\r\nName the main uncertainties in the current knowledge of Exoplanet interiors and atmospheres\r\nIdentify synergies between our Solar system and Exoplanets" . . "Presential"@en . "FALSE" . . "Master of Astronomy and Data Science"@en . . "https://www.universiteitleiden.nl/en/education/study-programmes/master/astronomy/astronomy-and-data-science" . "120"^^ . "Presential"@en . "In the master’s specialisation Astronomy and Data Science you focus on development and application of new data-mining technologies, fully embracing modern astronomy as a data rich science. You combine the research curriculum in Astronomy with in-depth training in Computer Science.\n\nThe Astronomy and Data Science master’s programme is built on world-class computational astrophysics research as well as hightech industry expertise. It covers a wide range of research areas studying complex astronomical phenomena, including radiative transfer, computation of dynamical internal galaxy structures and hydrodynamical modeling of galaxy formation and evolution of the intergalactic medium.\n\nThis two-year Astronomy and Data Sicence programme uniquely combines advanced Astronomy courses of the Leiden Observatory and relevant courses from the Computer Science master’s programme of the Leiden Institute of Advanced Computer Science including advanced data mining and neural networks. To this end, the Leiden Observatory offers sophisticated computational facilities ranging from local computer clusters to high-performance systems at national and international computing centers.\n\nOutcome:\nDuring the programme, you learn to perform academically sound research and evaluate scientific information independently and critically. Without exception, you actively participate in current research within the institute and are individually supervised by our international scientific staff. Students with a Leiden degree in Astronomy become strong communicators and collaborators and can easily operate in an international setting. You will acquire extensive astronomical research experience and highly advanced analytical and problem solving skills."@en . . . . . . "2"@en . "FALSE" . . "Master"@en . "Thesis" . "2314.00" . "Euro"@en . "19600.00" . "Mandatory" . "Most graduates holding a MSc degree in Astronomy from Leiden University find work in many different capacities, including:\n\n1. Research: universities, observatories, research institutes\n2. Industry and consultancy: ICT, R&D, telecom, high technology, aerospace\n3. Finance: banking, insurance, pension funds\n4. Public sector: governments, policy makers, high schools\n5. Science communication: journalism, popular writing, museums\n6. Typical jobs for Astronomy graduates include:\n\nScientific researcher (postdoc, research fellow, professor)\n1. R&D engineer\n2. Consultant\n3. Data scientist, statistician\n4. Policy advisor, public information officer (e.g. Ministry of Foreign Affairs)\n5. High school physics teacher\n6. Scientific editor for magazines, newspapers and other media\n7. Research at Leiden Observatory\n\nIf you want to get more deeply involved in research after graduating in Astronomy, consider pursuing a PhD at Leiden Observatory. If you have completed the Leiden master’s degree programme in Astronomy, you are directly eligible for admission to our PhD programme"@en . "no data" . "TRUE" . "Upstream"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .