. "Spacecraft Engineering"@en . . . . . . . . . . . . . . . . . "Spacecraft design and subsystems engineering"@en . . "3" . "This course will cover the following topics: Space mission analysis and engineeringGeneral space system principlesApplication of analysis for various spacecraft-subsystems covered in the previous semester (Attitude control, Power, Communications, Command and Data, Structure, Thermal, Propulsion, etc.)Synthesis of subsystems in a spacecraft system design project\n\nOutcome:\r\nHaving taken this course students will be able to acquire the fundamentals of space mission engineering and spacecraft design understand the principle of multidisciplinary system design and spacecraft as a complex system composed of different subsystems with interdisciplinary dependencies engineer a space mission and design a spacecraft meeting the mission requirements understand functions, methods, and analysis required in space mission analysis work in a team environment towards a spacecraft design project" . . "Presential"@en . "TRUE" . . "Master in Interdisciplinary Space Master"@en . . "https://www.uni.lu/fstm-en/study-programs/interdisciplinary-space-master/" . "120"^^ . "Presential"@en . "The Interdisciplinary Space Master (ISM) of the University of Luxembourg is developed with the Luxembourg Space Agency (LSA). It offers a starting point for a new global space industry, to create, shape, and sustain space enterprises.\nThe ISM provides students with an understanding of Space project management, space policy, ethics, and laws, entrepreneurship, legal aspects of creating intellectual property and finance and managing innovation.\n\nOutcome:\nGraduates can thus create, shape, and sustain leading commercial space enterprises and play an important role in the economy of the future.\n\nGraduates are prepared for a variety of professional functions requiring skills in:\r\n1. Systems and space systems engineering, technology development, and application\r\n2. Space mission analysis, spacecraft design, and data processing\r\n3. Big data analytics, machine learning, artificial intelligence\r\n4. Software and/or hardware programming tools (robotics, STK, etc.)\r\n5. Space application systems and the corresponding observation methods\r\n6. Translation of scientific space objectives into mission requirements used to advise system engineers\r\n7. Processing, analysis, and interpretation of space-derived data (sometimes big data) using machine learning and artificial intelligence for a variety of space applications\r\n8. Design of observation and navigation systems for a particular purpose\r\n9. Quality control and assessment of the reliability of space data"@en . . . . . . . . . "2"@en . "FALSE" . . "Master"@en . "Thesis" . "4000.00" . "no data"@en . "Not informative" . "None" . "Career opportunities for ISM graduates include jobs in technical or administrative areas throughout the space sector. They may also become engineers or consultants. With their technical knowledge and business expertise they are also prepared to join start-up and proof-of-concept projects.\r\n\r\nFurther study through a doctoral programme is possible."@en . "no data" . "TRUE" . "Upstream"@en . . . . . . . . . . . . . . . . . . . . . . . . . .