. "Algorithms, Data Structures, Complexity, And Computability, Modeling Complex Systems"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Computational physics I"@en . . "3" . "Learning outcomes\nStudent who has passed the course:\n* Knows about the principles of multiscale modelling.\n* Knows the applicability of density functional theory and is able to use it for solving problems.\n* Knows the applicability of monte carlo and is able to use it for solving problems.\n* Knows the applicability of molecular dynamics and is able to use it for solving problems.\n* Knows the applicability of finite element method and is able to use it for solving problems.\n* Know about mathematical methods for solving differential equations an is able to use them for solving problems.\nBrief description of content\nDuring the course a student will learn the main methods that are used in the modelling of physical processes. THe mothods will cover processes from micro to macro scale. The topics that will be presented are: density functional theory for quantum mechanical modelling of a material, monte carlo and molecular dynamics for empirical atomistic simulations, finite element method for studying processes in the continuum and mathematical methods for solving differential equations. Additionally, all topics are accompanied with practical exercises that help to understand the topics even further." . . "Presential"@en . "FALSE" . . "Bachelor in Science and technology"@en . . "https://ut.ee/en/curriculum/science-and-technology" . "180"^^ . "Presential"@en . "The international three-year bachelor's programme in Science and Technology has innovative content and comprises selected parts of all taught in the Faculty of Science and Technology. It provides a broad overview of natural and exact sciences and technologies.\n\nIn the first year, students study subjects which give good basic knowledge and prepare them to work with modern technologies and materials. Later it is possible to choose a suitable field of specialisation based on the acquired knowledge about different areas. Students can choose a combined specialisation in genetics and biotechnology, bioengineering and robotics, or chemistry and materials science. Learning outcomes\nThe student who has completed the curriculum:\n1) possesses a sufficient level of knowledge in mathematics and natural and exact sciences to continue professional studies on Master's level and work in professions that require basic knowledge in the field and simpler working skills;\n2) understand the general principles of the main areas of natural sciences, orientates in the basic principles of the fields of natural sciences and can describe these by basic concepts;\n3) knows the main research methods used in the field and understands the nature of scientific method;\n4) knows how to collect professional information by using relevant methods and tools, and interpret the information critically and creatively;\n5) is able to plan and complete professional assignments, choosing and implementing the suitable methods and technologies;\n6) is able to analyse the issues related to the field in oral and written form and participate in the respective discussions;\n7) is able to assess the theoretical and application value of knowledge and skills obtained during the completion of the curriculum from both the personal and social perspective, taking into account the scientific, social and ethical aspects;\n8) has acquired the necessary learning skills and needs for constant professional development and lifelong learning."@en . . . . . "3"@en . "FALSE" . . "Bachelor"@en . "Thesis" . "6000.00" . "Euro"@en . "6000.00" . "None" . "The general objective of the programme is to provide students with a broad-based academic education in natural sciences, which enables them to continue studies at the master's level in any field of natural science or work in professions that require basic knowledge and working skills. For example, graduates can work at monitoring centres, different technological enterprises and laboratories as a technologically competent lab personnel members."@en . "3"^^ . "TRUE" . "Upstream"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .