. "Environmental Engineering And Sustainability"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Morphodynamics of wave-dominated coasts"@en . . "7.50" . "By the end of the course, the student:\nHas acquired an in-depth, quantitative understanding of wave statistics (including time series analysis), wave transformation, wave-induced and aeolian sand transport, and morphological evolution in wave-dominated coasts;\nCan program assignments related to time series analysis, modelling and data-model comparison using Matlab or Python;\nCan differentiate and recommend modelling approaches for waves and wave-driven morphodynamics;\nIs able to critically read scientific literature and to position detailed research results in the broader picture of coastal research;\nCan describe and motivate the choices in the management of the wave-dominated coasts (with a focus on the Dutch context), including dunes.\nContent\nWind-generated waves are the main driving force for the evolution of the nearshore zone (water depths less than 10 m) on time scales of hours (storms) to decades. As waves approach the coast, they transform by altering, among other characteristics, shape, height, length, and orientation. This results in a wide variety of other processes, including alongshore currents and rip currents. Also, it leads to the transport of sand perpendicular to and along the coast. As a consequence, the morphology of the nearshore zone changes continuously as the offshore wave conditions change with time and when mankind intervenes with coastal processes, for example, by artificially placing sand to enhance coastal safety. This makes the nearshore zone one of the most dynamic and complicated regions within the oceanic domain.\nMain topics of the course include:\ncross-shore transformation of wind-generated waves, and the resulting currents;\nsand transport and morphological evolution;\nmodelling of waves, currents, and sand transport;\nat a range of time scales (hours - decades) and in natural and humanly altered wave-dominated coastal settings. The later setting provides the student with insight into issues related to present-day coastal zone management." . . "Presential"@en . "TRUE" . . "Master in Earth Surface and Water"@en . . "https://www.uu.nl/en/masters/earth-surface-and-water" . "120"^^ . "Presential"@en . "The Master’s programme Earth Surface and Water involves the study of natural and human-induced physical and geochemical processes, patterns, and dynamics of the Earth’s continental and coastal systems. The main subject areas you will study during the two-year programme consist of the dynamics of coastal and river systems, (geo-)hydrological processes, groundwater remediation, land degradation in drylands and mountainous regions, natural hazards, and delta evolution on centennial and longer time scales.\n\nFocus on societal problems\nModern society puts increasing pressure on the natural environment. The Earth Surface and Water programme therefore focusses on imminent societal problems, such as society’s increased vulnerability to climate and environmental changes and to natural hazards such as drought, flood, and mass movements. It also addresses the threats and opportunities resulting from human activity on our physical environment, including the hydrological cycle.\n\nCore areas of research\nIn the Earth Surface and Water programme you will study the interactions between the natural and the socio-economic systems using quantitative and spatially explicit methods. It addresses the dynamic patterns and processes of the physical and chemical components on the Earth’s surface, shallow subsurface and the coastal areas. Understanding the historic and current processes will help to predict their responses to global change.\nThe programme contains field observations and laboratory experiments with the latest developments in remote sensing and computational methods.\n\nSome examples of the programme's societal and scientific questions:\nHow do river floods affect delta systems and their inhabitants?\nHow can we use natural processes under climate change to maintain safe - yet attractive and dynamic - coastlines?\nHow to leverage remote sensing for detailed monitoring of natural processes and ecological variables?\nWill we have enough water to sustain the world’s rapidly increasing population in 2050?\nWhat is the most efficient way to clean an oil spill that enters the soil and groundwater?"@en . . . . . "2"@en . "FALSE" . . "Master"@en . "Thesis" . "2530.00" . "Euro"@en . "23765.00" . "Recommended" . "equipped to work in both fundamental and applied research; career in applied research at government institutes, consulting firms, or industries; Knowledge of coastal and river management, land use, natural resources, pollution, and hazard mitigation; understanding the past, present, and future evolution of Earth’s environment, and human impact on this evolution; Potential career paths physical geographer, geochemist, and hydrologist."@en . "4"^^ . "TRUE" . "Downstream"@en . . . . . . . . . . . . . . . . . . . . . . . . .