. "Advanced heat transfer"@en . . "4.00" . "Course Contents In this course the concepts & mathematics of heat transfer in the engineering context are treated.\nElementary understanding of the three modes of heat transfer: conduction, convection and radiation, will be briefly reviewed\nduring the first two lectures.\nDuring the remainder of the course, the underlying physics will be emphasized and advanced mathematical formulations will be\nexplained. A large focus in the course will be on the analysis of heat transfer in real-life integrated systems.\nSubjects in order of appearance:\n- A refresher on the underlying thermodynamics; energy, enthalpy, specific heats and phase change enthalpy.\n- A refresher on Conduction, Convection and Radiation.\n- Integral and differential energy balances in a 1-D and multiple-D continuum; absorption, reaction and dissipation as source\nterms.\n- Stationary conduction: cooling fins, multi-dimensional conduction and Laplaces equation; boundary conditions; analytical\ntechniques & numerical techniques; relaxation.\n- Phase change as a boundary phenomenon; melting and solidification fronts; Jakob number & Stefan condition.\n- Instationary conduction: Fourier and Biot number; boundary conditions; analytical techniques & numerical techniques; stability\ncriteria.\n- Forced & Free convection: Nusselt, Stanton, Prandlt & Peclet numbers; Analysis & the physics behind empirical correlations.\nThe role of boundary conditions.\n- Radiation: radiative exchange between grey bodies, solar radiation, spectral characteristics, surface characteristics.\nStudy Goals More specifically: The student is able to\n1. Distinguish between the different modes of heat transfer, and divide real-life systems into subsystems of elementary heat\ntransfer modes in a qualitative and quantitative manner.\n2. For all of the below; give the physical interpretation of contributors and terms in balances in words and in sketches.\n3. Set up appropriate integral and differential energy balances for one- and multidimensional instationary conduction.\n4. Justify and apply simplifications and define the appropriate boundary conditions, including problems containing phase\nchanges, i.e. Stefan conditions.\n5. Indicate mathematical solution strategies - both analytical and numerical, and apply those for standard geometries.\n6. Distinguish between different modes of convective heat transfer, and distinguish between the different physical mechanisms\nunderlying empirical correlations.\nIndicate implications when more detailed distributions of convective heat transfer are involved.\n7. Estimate the magnitude of radiative heat transfer, distinguish between thermal and short-wave properties and spectral\ndistributions, qualify and quantify the role of surface properties in real-life applications." . . "Presential"@en . "TRUE" . . "Others"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Master in Aerospace engineering"@en . . "Luchtvaart- en Ruimtevaarttechniek (tudelft.nl)" . "120"^^ . "Presential"@en . "In the MSc programme in Aerospace Engineering, you will have abundant opportunities for working on projects and internships across the globe, taking advantage of established relationships with Schiphol Airport, the European Space Agency, KLM, Airbus and other aerospace industries and research institutes. You will also have the option of working as a team member in international competitions in extra-curricular activities.\n\nAt TU Delft, you will obtain hands-on experience whilst working in test and laboratory facilities that are unsurpassed in Europe. Our facilities include low-speed and high-speed (up to Mach 11) wind tunnels, GPS measurement stations, the Structures and Materials Laboratory, the SIMONA research flight simulator, a Cessna Citation II flying laboratory, a collection of large and small aircraft and spacecraft parts, the Delfi Ground Station for satellite communications and a clean room for research and training on our own university satellites."@en . . . . . . . . . "2"@en . "FALSE" . . "Master"@en . "Thesis" . "2314.00" . "Euro"@en . "20560.00" . "Mandatory" . "no data"@en . "6"^^ . "TRUE" . "Upstream"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .