. "Other Physics Kas"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Foundations of physics 2b"@en . . "20.0" . "#### Prerequisites\n\n* Foundations of Physics 1 (PHYS1122) AND ((Single Mathematics A (MATH1561) and Single Mathematics B (MATH1571)) OR (Calculus I (MATH1061) and Linear Algebra I (MATH1071))).\n\n#### Corequisites\n\n* Foundations of Physics 2A (PHYS2581) AND (Mathematical Methods in Physics (PHYS2611) OR Analysis in Many Variables II (MATH2031) which covers similar material).\n\n#### Excluded Combination of Modules\n\n* None\n\n#### Aims\n\n* This module is designed primarily for students studying Department of Physics or Natural Sciences degree programmes.\n* It builds on the Level 1 module Foundations of Physics 1 (PHYS1122) by providing courses on Thermodynamics, Condensed Matter Physics and Optics.\n\n#### Content\n\n* The syllabus contains:\n* Thermodynamics: Basic ideas, zeroth law and temperature; Definitions of state variables; the first law of thermodynamics; Heat engines and the second law of thermodynamics; Clausius inequality, Entropy and entropy change in reversible and non-reversible processes; Availability of Energy; Heat and refrigeration cycles; Thermodynamic Potentials and Maxwell's relations; Equilibrium, equations of state and phase transitions; Low temperatures and third law of thermodynamics; thermodynamics of other systems; Basic postulates of statistical mechanics; kinetic theory; Boltzmann formulation of entropy; Stirling's approximation; Boltzmann distribution function; Relationship between entropy and number of microstates in a macrostate; Bose-Einstein and Fermi-Dirac distribution functions.\n* Condensed Matter Physics: Review of crystal structures and their description; Wave Diffraction and the Reciprocal Lattice; Crystal binding and Elastic Constants; Bose and Fermi distributions; Phonons; The Drude model; Free Electron Fermi Gas Model; Energy Bands; Bending of energy bands close to the Brillouin zone boundary; Metals, Semimetals and Insulators.\n* Optics: Light as a wave: Superposition principle, spatial frequency; Intensity; Scalar approximation; Plane waves, spherical/cylindrical waves, and phasors; Interference – Young’s double slit, Michelson interferometer; Polarisation, Linear/circular basis, Malus’ law, Birefringence, Optical activity and the Faraday effect; Many waves: Multiple slits and the Fresnel diffraction integral; Fresnel and Fraunhofer diffraction; Laser beams.\n\n#### Learning Outcomes\n\nSubject-specific Knowledge:\n\n* Having studied this module students will have an understanding of the thermodynamics of matter, the four laws of thermodynamics and their application.\n* They will have appreciation of distributions of classical and quantum particles leading to a discussion of entropy and temperature.\n* They will have the ability to describe the arrangement of atoms in a crystal structure and the diffraction pattern that results in both direct and reciprocal space.\n* They will have an understanding of elastic vibrations of atoms in crystals and how these vibrations are quantised into phonons.\n* They will have knowledge of the concept of phonons and how these explain the thermal properties of solids.\n* They will have knowledge of the breakdown in classical physics and how to apply quantum mechanics to the study of electrons in crystalline solids, the nature of electron states and how metallic, semiconducting and insulating materials arise.\n* They will have an appreciation of X-ray and neutron scattering as a probe of crystal structure, vibrational, and electronic properties of solids in 2 and 3 dimensions.\n* They will be able to use analytical methods to describe a range of wave phenomena, including interference, diffraction and polarisation, and will be familiar with their applications in optics.\n\nSubject-specific Skills:\n\n* In addition to the acquisition of subject knowledge, students will be able to apply the principles of physics to the solution of predictable and unpredictable problems.\n* They will know how to produce a well-structured solution, with clearly-explained reasoning and appropriate presentation.\n\nKey Skills:\n\n#### Modes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module\n\n* Teaching will be by lectures and tutorial-style workshops.\n* The lectures provide the means to give concise, focused presentation of the subject matter of the module. The lecture material will be defined by, and explicitly linked to, the contents of the recommended textbooks for the module, thus making clear where students can begin private study. When appropriate, the lectures will also be supported by the distribution of written material, or by information and relevant links online.\n* Regular problem exercises and workshops will give students the chance to develop their theoretical understanding and problem solving skills.\n* Students will be able to obtain further help in their studies by approaching their lecturers, either after lectures or at other mutually convenient times.\n* Student performance will be summatively assessed through a written examination and an online test and formatively assessed through problem exercises and a progress test. The written examination and online test will provide the means for students to demonstrate the acquisition of subject knowledge and the development of their problem-solving skills. The problem exercises, progress test and workshops will provide opportunities for feedback, for students to gauge their progress and for staff to monitor progress throughout the duration of the module.\n\nMore information at: https://apps.dur.ac.uk/faculty.handbook/2023/UG/module/PHYS2591" . . "Presential"@en . "TRUE" . . "Master in Physics and Astronomy"@en . . "https://www.durham.ac.uk/study/courses/physics-and-astronomy-ff3n/" . "120"^^ . "Presential"@en . "**Course details**\nIf you are fascinated by the relationship between mathematics, the cosmos and the scientific world this MPhys could be for you. This integrated Master's degree is the first step towards Chartered Physicist status. It will suit those looking for an accredited course that leads to higher level education or a research role in physics, while also providing the knowledge, analytical and problem-solving skills for a career in the sciences, engineering, finance or IT.\n\nPhysics degrees at Durham offer a high level of flexibility. We offer four Institute of Physics accredited courses - MPhys qualifications in Physics, Physics and Astronomy, and Theoretical Physics and the three-year BSc in Physics - which follow the same core curriculum in Year 1.\n\nSubject to the optional modules chosen, it is possible to switch to one of the other courses until the end of the second year. You can also apply for a one-year work placement or study abroad opportunity with one of our partner organisations, increasing the course from four years to five or substituting the existing Year 3.\n\nThe first year lays the foundation in physics theory, mathematical skills and laboratory skills that you will need to tackle more complex content later in the course. From Year 2 the focus on astronomy and astrophysics increases.\n\nAs you progress through the course, learning is more closely aligned to real-world issues through project work and optional modules that are tailored to your interests and aspirations. Your knowledge is further extended with a project based on a live research topic, and higher-level modules which take your study of physics and astronomy to a greater depth.\n\n**Course structure**\n*Year 1*\nCore modules:\nFoundations of Physics introduces classical aspects of wave phenomena and electromagnetism, as well as basic concepts in Newtonian mechanics, quantum mechanics, special relativity and optical physics.\n\nDiscovery Skills in Physics provides a practical introduction to laboratory skills development with particular emphasis on measurement uncertainty, data analysis and written and oral communication skills. It also includes an introduction to programming.\n\nExamples of optional modules:\nSingle Mathematics\nLinear Algebra\nCalculus.\n\n*Year 2*\nCore modules:\nFoundations of Physics A develops your knowledge of quantum mechanics and electromagnetism. You will learn to apply the principles of physics to predictable and unpredictable problems and produce a well-structured solution, with clear reasoning and appropriate presentation.\n\nFoundations of Physics B extends your knowledge of thermodynamics, condensed matter physics and optics.\n\nStars and Galaxies introduces astronomy and astrophysics. You will develop an understanding of the basic physics of stellar interiors and learn why we see stars of differing colours and brightness. The module extends your knowledge of pulsating and binary stars and introduces galactic and extragalactic astronomy.\n\nMathematical Methods in Physics provides the necessary mathematical knowledge to successfully tackle the Foundations of Physics modules. It covers vectors, vector integral and vector differential calculus, multivariable calculus and orthogonal curvilinear coordinates, Fourier analysis, orthogonal functions, the use of matrices, and the mathematical tools for solving ordinary and partial differential equations occurring in a variety of physical problems.\n\nLaboratory Skills and Electronics builds lab-based skills, such as experiment planning, data analysis, scientific communication and specific practical skills. It aims to teach electronics as a theoretical and a practical subject, to teach the techniques of computational physics and numerical methods and to provide experience of a research-led investigation in physics in preparation for post-university life.\n\nExamples of optional modules:\nTheoretical Physics\nPhysics in Society.\n\n*Year 3*\nCore modules:\nFoundations of Physics A further develops your knowledge to include quantum mechanics and nuclear and particle physics. You will learn to apply the principles of physics to complex problems and produce a well-structured solution, with clear reasoning and appropriate presentation.\n\nFoundations of Physics B extends your knowledge to include statistical physics and condensed matter physics.\n\nPlanets and Cosmology explains the astrophysical origin of planetary systems and the cosmological origin of the Universe. You will learn about the formation and workings of our Solar System, its orbital dynamics and the basic physics of planetary interiors and atmospheres.\n\nThe Computing Project is designed to develop your computational and problem-solving skills. You work on advanced computational physics problems using a variety of modern computing techniques and present your findings in a project report, poster and oral presentation.\n\nExamples of optional modules:\nTeam Project\nAdvanced Laboratory\nMathematics Workshop\nPhysics into Schools\nTheoretical Physics\nCondensed Matter Physics\nModern Atomic and Optical Physics.\n\n*Year 4*\nCore modules:\nThe research-based MPhys Project provides experience of work in a research environment on a topic at the forefront of developments in a branch of either physics, applied physics, theoretical physics or astronomy, and develops transferable skills for the oral and written presentation of research. The project can be carried out individually or as part of a small group in one of the Department's research groups or in collaboration with an external organisation.\n\nAdvanced Astrophysics covers astronomical techniques and radiative processes in astrophysics. This module provides a working knowledge of the advanced optical techniques used in modern astronomy and of the radiative processes that generate the emission that is studied in a wide range of astronomical observations.\n\nTheoretical Astrophysics examines cosmic structure formation and general relativity. This module provides an overview of our current understanding of the formation and evolution of cosmic structure and an introduction to Einstein's general theory of relativity.\n\nExamples of optional modules:\nAtoms, Lasers and Qubits\nAdvanced Theoretical Physics\nAdvanced Condensed Matter Physics\nParticle Theory\nTheoretical Physics\nCondensed Matter Physics\nModern Atomic and Optical Physics.\nAdditional pathways\nStudents on the MPhys in Physics and Astronomy can apply to be transferred onto either the 'with Year Abroad' or 'with Placement' pathway during the second year. Places on these pathways are in high demand and if you are chosen you can choose to extend your course from four years to five, or substitute the existing Year 3.\n\n**Placement**\nYou may be able to take a work placement. Find out more in https://www.durham.ac.uk/study/undergraduate/how-to-apply/study-options/placements/.\n\nModules details: https://apps.dur.ac.uk/faculty.handbook/2023/UG/programme/FF3N"@en . . . "4"@en . "FALSE" . . "Master"@en . "Both" . "9250.00" . "British Pound"@en . "30500.00" . "Recommended" . "**Career opportunities**\n*Physics*\nWe seek to develop the practical and intellectual skills sought by employers and we are regularly ranked among the country's top performers for graduate employment. Our graduates have progressed to careers in business, industry, commerce, research, management and education, and typically more than fifth of our graduates go on to study for higher degrees.\n\nThe Department also has an impressive track record of spin-out technology companies that commercialise our knowledge in areas of semiconductors, composites and advanced instrumentation. Examples of high-profile employers include BT, Procter & Gamble, Rolls Royce and BAE Systems.\n\nOf those students who graduated in 2019:\n83% are in paid employment or further study 15 months after graduation across all our programmes\n\nOf those in employment:\n81% are in high skilled employment\nWith an average salary of £34,000.\n\n(Source: HESA Graduate Outcomes Survey. The survey asks leavers from higher education what they are doing 15 months after graduation. Further information about the Graduate Outcomes survey can be found here www.graduateoutcomes.ac.uk)"@en . "2"^^ . "TRUE" . "Downstream"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .