. "Planetary Science"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Star and planet formation"@en . . "6" . "Stars and planets are formed deep inside molecular clouds, but how this actually happens is still being unravelled. This course will provide a broad overview of our current theoretical and observational understanding of the physical processes involved in star- and planet formation. The course consists of two parts. First, the cloud collapse leading to protostars with dense envelopes, circumstellar accretion disks and outflows is discussed. Second, the evolution of protoplanetary disks and the scenarios for the formation of giant and terrestrial planets are presented. Kuiper Belt Objects, comets and meteorites each tell their own story about the physical processes that took place in our own early Solar System. In contrast, exo-planetary systems show us how other protoplanetary systems evolved differently than our own. We will discuss recent observational work with ALMA and VLT, past and future missions to comets and asteroids, and exciting first results from the newly launched James Webb Space Telescope.\r\n\r\nThe detailed outline is:\r\n\r\nDense molecular clouds\r\n\r\nCloud collapse and spectral energy distributions\r\n\r\nBipolar outflows\r\n\r\nPre-main sequence stars\r\n\r\nHigh-mass star formation\r\n\r\nCircumstellar disks\r\n\r\nDisk evolution and grain growth\r\n\r\nFormation of planets\r\n\r\nKuiper-Belt objects and structure of debris disks\r\n\r\nMeteorites & primitive solar system material\r\n\r\nExoplanets as probes of planet formation processes\n\nOutcome:\nThe student will gain up-to-date insight into one of the fastest growing research areas in astronomy. The course will provide sufficient background to be able to follow the current literature on star- and planet formation and to do research in this field or in a neighboring field (e.g., star formation in external galaxies or on cosmological scales)." . . "Presential"@en . "TRUE" . . "Master of Astronomy"@en . . "https://www.universiteitleiden.nl/en/education/study-programmes/master/astronomy" . "120"^^ . "Presential"@en . "Within the two-year Astronomy master’s programme, you can choose from seven specialisations, ranging from fundamental or applied astronomy research in cosmology, instrumentation or data science, to combinations of astronomy research with education, management or science communication.\n\nThe two-year Astronomy master’s programme offers seven specialisations:\n1. Astronomy Research: you follow a tailor-made programme to become an independent and resourceful scientist.\n2. Astronomy and Instrumentation: obtain in-depth knowledge of state of the art approaches to develop high tech astronomy instruments.\n3. Astronomy and Data Science: focus on development and application of new data mining technologies, fully embracing modern astronomy as a data rich branch of science. \n4. Astronomy and Cosmology: discover all aspects of modern astrophysics, including extensive observation, interpretation, simulation and theory.\n5. Astronomy and Business Studies: combine training in astronomy with education in management and entrepreneurship.\n6. Astronomy and Science Communication and Society: combine research with all aspects of science communication, such as journalism and universe awareness education.\n7. Astronomy and Education (taught partly in Dutch): prepare yourself for a career in teaching science at high school level.\n\nOutcome:\nDuring the programme, you learn to perform academically sound research and evaluate scientific information independently and critically. Without exception, you actively participate in current research within the institute and are individually supervised by our international scientific staff. Students with a Leiden degree in Astronomy become strong communicators and collaborators and can easily operate in an international setting. You will acquire extensive astronomical research experience and highly advanced analytical and problem solving skills."@en . . . . . . "2"@en . "FALSE" . . "Master"@en . "Thesis" . "2314.00" . "Euro"@en . "19600.00" . "Mandatory" . "With a master’s degree in Astronomy you are well prepared for jobs in research, industry and the public sector, including technological, financial and consultancy companies, research institutes, governments and science communication organizations.\n\nMost graduates holding a MSc degree in Astronomy from Leiden University find work in many different capacities, including:\r\n1. Research: universities, observatories, research institutes\r\n2. Industry and consultancy: ICT, R&D, telecom, high technology, aerospace\r\n3. Finance: banking, insurance, pension funds\r\n4. Public sector: governments, policy makers, high schools\r\n5. Science communication: journalism, popular writing, museums\r\n6. Typical jobs for Astronomy graduates include:\r\n\r\nScientific researcher (postdoc, research fellow, professor)\r\n1. R&D engineer\r\n2. Consultant\r\n3. Data scientist, statistician\r\n4. Policy advisor, public information officer (e.g. Ministry of Foreign Affairs)\r\n5. High school physics teacher\r\n6. Scientific editor for magazines, newspapers and other media\n\nIf you want to get more deeply involved in research after graduating in Astronomy, consider pursuing a PhD at Leiden Observatory. If you have completed the Leiden master’s degree programme in Astronomy, you are directly eligible for admission to our PhD programme."@en . "7"^^ . "TRUE" . "Upstream"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . .