. "Computer Systems, Architectures, Network"@en . . . . . . . . . . . . . . . . . . . . . . . . . "Safety-critical digital systems"@en . . "5" . "Learning outcomes of the course unit:\nA student has knowledge on reliability of digital systems and design of safety-critical systems. Student is familiar with faults in digital systems that are induced by cosmic rays and is able to apply suitable fault-tolerant architectures to ensure the reliability of space electronic systems. Students are able also apply advanced FPGA technologies for space engineering. Students have practical skills advanced methods of digital system verification and debugging. Based on this, students are able to design, verify and debug a safety-critical digital system with a given level of reliability, suitable for use in space applications. Students are able to use common EDA tools for design and implementation of digital systems.Course Contents:\n1. Safety-critical electronic systems for space applications.\n2. Need for design verification, test and diagnostics.\n3. Advanced methods of system verification (OVM, UVM).\n4. Defects, faults, error, bugs, failures. Test and testability.\n5. Design for testability methods. SCAN approach.\n6. BIST. Memory testing.\n7. FPGA technologies for space engineering (Rad Hard FPGA). Debugging in FPGA (JTAG).\n8. Error mitigation techniques for FPGA.\n9. Faults in digital systems induced by cosmic rays. Reliability. Six Sigma.\n10. Fault-tolerant digital systems. Hardware and information redundancy.\n11. Built-in self repair (BISR) systems.\n12. Systems-on-chip (SoC)." . . "Presential"@en . "TRUE" . . "Master in Space Engineering"@en . . "https://www.stuba.sk/english-1/stu/ects-label/ects-information-package/information-on-degree-programmes/all-programmes.html?page_id=5552&f=30&le=2&l=all&c=0&pg=1&ad=true#" . "120"^^ . "Presential"@en . "The graduate of the second-degree study program Space Engineering will acquire a full university degree in the field of Electrical Engineering with a dominant focus on modern and multidisciplinary engineering technologies used mainly in high-performance cosmic and space systems, but also in other electronic system components. As part of the study and completion of profile subjects such as: Materials and construction of space systems, Sensors and actuators, Energy sources, Microsystem technology, Interaction of radiation and matter, Space devices, Space research methods, the graduate will acquire a wide range of knowledge and skills in areas that are an integral part of integrated technological systems for space applications. The graduates will be able to solve complex technical tasks and research issues under different individual projects. Students will also practice working in a project team, where they gain management skills and other soft skills. Thus, the graduates of Space Engineering study will obtain competitiveness not only in space applications but also in other research areas, industry fields, as well as social life. Key Learning Outcomes:\n\"The graduate will learn to design, optimize, and construct advanced embedded electronic systems, sensor systems, various types of microsystems, robotic and propulsion systems, as well as control, navigation, and communication systems, and will use information technology and artificial intelligence in their design.\nThe graduate has knowledge of astrophysics, astrodynamics, astrobiology as well as mechanics and thermo-kinetics of space systems and can apply skills in the use of modern engineering CAE tools, including modelling and simulation of electro-mechanical systems.\nThe graduate is prepared to solve theoretical and practical tasks in the development of complex systems, especially for space applications using modern engineering tools, technologies, and an interdisciplinary systems approach.\""@en . . . "2"@en . "FALSE" . . . "Master"@en . "Final Exam of content of DP" . "15100.00" . "British Pound"@en . "31100.00" . "None" . "The graduate will find employment not only in the field of space engineering and advanced electronic systems, but also in related areas of industry, such as robotics, mechatronics, informatics, automotive industry (mechanical engineering), and others. Application is not limited to employment in the Slovak Republic and its surroundings, but also abroad, where graduates can offer high expertise in several industries."@en . "1"^^ . "FALSE" . "Upstream"@en . . . . . . . . . . . . . . . . . . . . . . . . . . .