. "Environmental analytical techniques"@en . . "6" . "Contents:\nThe lectures give an introduction into analytical chemistry with emphasis on spectrometry to measure inorganic coumpounds, structure elucidation and chromatography of organic compounds, organic carbon (humus) fractionation and free ion analysis using electrodes and the Donnan membrane technique (DMT). Selection of a particular method is exemplified by real-world problems in air, soil and water chemistry, environmental chemistry, environmental technology, etc. (case-study).\nTutorials related to the lecture topics help improving insight by answering questions and solving assignments (simple calculations).\nIn the practical students determine different chemical forms of compounds (e.g. heavy metals, benzene) in groundwater, surface water, soil, and plant material with a variety of analytical techniques, such as: inductively coupled plasma optical emission spectrometry (ICP-OES), mass spectrometry (MS), gas chromatography and high pressure liquid chromatography (HPLC). The structure of unknown organic constituents is elucidated by means of mass spectroscopy (MS) and nuclear magnetic resonance (NMR). Free ions are analysed using specific metallic electrodes and with a specific separation method (DMT). Organic material is fractionated to determine humic and fulvic acid concentrations using TOC analysis (Total Organic Carbon). The various methods available are compared with respect to their field of application, limits of detection, selectivity, accuracy, precision, throughput and robustness.\nGroups of students (3-4) will work on a case-study reflecting real-life problems. The group has to analyse the problem situation regarding chemical analytical aspects, formulate a proposal for further research and specify the chemical analytical techniques to be used.\nLearning outcomes:\nAfter successful completion of this course students are expected to be able to:\n- demonstrate insight into how to tackle practical chemical analytical problems;\n- demonstrate understanding of the basic theory and relevant parameters in analytical chemistry;\n- apply methods of instrumental chemical analysis to natural materials and (eco)systems;\n- demonstrate awareness of the limitations of the various methods;\n- report about experimental analytical results and draw correct conclusions;\n- discuss chemical analytical aspects relevant for the selection of proper analytical techniques for real-life problem situations." . . "Presential"@en . "TRUE" . . "Other Environmental Sciences Kas"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Master in Environmental Sciences"@en . . "https://www.wur.nl/en/education-programmes/master/msc-programmes/msc-environmental-sciences.htm" . "120"^^ . "Presential"@en . "The Environmental Sciences master's programme in Wageningen has its roots in the natural, technological and social sciences. Students will gain insight into the socio-economic causes and the characteristics of pollution and degradation of the natural environment, including the effects on human beings, the atmosphere, ecosystems and other organisms. This two-year programme is based on an interdisciplinary approach. Students learn to develop analytical tools and models, as well as technologies, socio-political arrangements and economic instruments to prevent and control the wicked environmental and sustainability issues like climate change, biodiversity loss and resource depletion."@en . . "2"@en . "FALSE" . . "Master"@en . "Thesis" . "2314.00" . "Euro"@en . "19600.00" . "Mandatory" . "Graduates find jobs at many different organisations. Professional job possibilities can be found as:\r\n\r\nA researcher at a university or a research institute\r\nAn adviser at governmental authorities (ministries, provinces and municipalities) or waterboards\r\nAn engineer or a consultant in the industry"@en . "4"^^ . "TRUE" . "Downstream"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .