. "Stable Isotopes in earth sciences"@en . . "7.50" . "By reading the isotopic composition of a sample—be it solid, liquid, or gaseous—one can tell a story about its origin and history. For example, if the sample is a mineral, one can elucidate the mechanisms or environmental controls involved in its formation or transformation. If the sample is an organism, one can elucidate its activity or eating habits. This course will teach you why this works, where it is applicable, and how it is done in practice.\nSpecifically, you will learn the theoretical principles behind equilibrium and kinetic stable isotope fractionation, understand the principles behind techniques used to analyze stable isotope composition of materials, become acquainted with a broad range of applications of stable isotopes in Earth sciences, and develop practical skills in processing and quantitatively interpreting stable isotope data.\nAdditionally, you will learn how to use certain data processing programs, and develop your writing, analytical, evaluation and communication skills.\n \nContent\nFirst, theoretical principles will be explained for equilibrium vs. kinetic isotope fractionation, mass-dependent vs. mass-independent isotope fractionation, and the temperature dependency of each. Subsequently, the following applications will be discussed in detail:\natmospheric carbon cycle, role of natural (assimilation vs. mineralization) and anthropogenic activity. Tracers: 13C in CO2, 13C and D in CH4.\nhydrological cycle, and its link to paleo-thermometry. Tracers: 18O and D in H2O, clumped isotopes (13C and 18O) in carbonate minerals.\nunderstanding the mechanisms of mineral formation and transformation from their isotopic composition (natural or experimentally perturbed); \nrole of biological activity (assimilation vs. mineralization pathways) on fractionation factors, tracing sources of biogenic minerals and conditions of their formation. Tracers: 13C in carbonates.\nreconstruction of food-webs. Tracers: 13C and 15N in specific compounds (e.g., lipids or fatty acids).\nquantification of organism-specific (e.g., microbial) rates of activity, stable isotope probing. Tracers: 13C, 15N, 18O, D" . . "Presential"@en . "TRUE" . . "Other Chemistry Kas"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Master in Earth Surface and Water"@en . . "https://www.uu.nl/en/masters/earth-surface-and-water" . "120"^^ . "Presential"@en . "The Master’s programme Earth Surface and Water involves the study of natural and human-induced physical and geochemical processes, patterns, and dynamics of the Earth’s continental and coastal systems. The main subject areas you will study during the two-year programme consist of the dynamics of coastal and river systems, (geo-)hydrological processes, groundwater remediation, land degradation in drylands and mountainous regions, natural hazards, and delta evolution on centennial and longer time scales.\n\nFocus on societal problems\nModern society puts increasing pressure on the natural environment. The Earth Surface and Water programme therefore focusses on imminent societal problems, such as society’s increased vulnerability to climate and environmental changes and to natural hazards such as drought, flood, and mass movements. It also addresses the threats and opportunities resulting from human activity on our physical environment, including the hydrological cycle.\n\nCore areas of research\nIn the Earth Surface and Water programme you will study the interactions between the natural and the socio-economic systems using quantitative and spatially explicit methods. It addresses the dynamic patterns and processes of the physical and chemical components on the Earth’s surface, shallow subsurface and the coastal areas. Understanding the historic and current processes will help to predict their responses to global change.\nThe programme contains field observations and laboratory experiments with the latest developments in remote sensing and computational methods.\n\nSome examples of the programme's societal and scientific questions:\nHow do river floods affect delta systems and their inhabitants?\nHow can we use natural processes under climate change to maintain safe - yet attractive and dynamic - coastlines?\nHow to leverage remote sensing for detailed monitoring of natural processes and ecological variables?\nWill we have enough water to sustain the world’s rapidly increasing population in 2050?\nWhat is the most efficient way to clean an oil spill that enters the soil and groundwater?"@en . . . . . "2"@en . "FALSE" . . "Master"@en . "Thesis" . "2530.00" . "Euro"@en . "23765.00" . "Recommended" . "equipped to work in both fundamental and applied research; career in applied research at government institutes, consulting firms, or industries; Knowledge of coastal and river management, land use, natural resources, pollution, and hazard mitigation; understanding the past, present, and future evolution of Earth’s environment, and human impact on this evolution; Potential career paths physical geographer, geochemist, and hydrologist."@en . "4"^^ . "TRUE" . "Downstream"@en . . . . . . . . . . . . . . . . . . . . . . . . .