. "Manufacturing Engineering"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Space technology"@en . . "6" . "Technology and science are usually considered distinct disciplines. In this Course it will be shown that science is a key ingredient for developing new techniques and conversely technology is important for modern science to make new \ndiscoveries. Particular emphasis will be given to space missions and high energy physics experiment where aerospace materials are often used because of their high mechanical characteristics. Another part of the course is devoted to the technology of composite materials and to non destructive testing. The content of the Course includes : Use of non destructive testing for checking structural integrity of space structures manufactured in metallic and composite materials, \nHolographic interferometry as a non destructive technique, Practical problems of space missions from the structural and technological point of view (satellites, interplanetary probes and international space station) through real cases of space \nmissions in which the School of Aerospace Engineering has been fully involved." . . "Presential"@en . "FALSE" . . "Master in Aerospace Engineering"@en . . "SPECIAL MASTER OF AEROSPACE ENGINEERING | Scuola di Ingegneria Aerospaziale (uniroma1.it)" . "no data" . "Presential"@en . "The learning objective of the Special Master of Aerospace Engineering is training experts that can be employed in advanced research and development centers in aerospace engineering.\n\nAn important aspect of the program consists in giving students a system-oriented approach to aerospace engineering. The capability of having a system-oriented and global vision of a space mission is not common in the industry because complexity of each subsystem pushes engineers to focus on single aspects. The design of the general architecture is assigned to the system engineer who is a long-experienced engineer that is able to have a global understanding of the project due to their experience acquired in various subsystems. System engineers are increasingly more difficult to find due to discontinuities that occur over time in the development of large space projects.\nMaster programs in aerospace engineering tend to provide students with at most a basic education in one of the areas of aerospace engineering because of the continuous technological advancement. On the other hand, complexity of current space programs asks for professionals capable of having an insight in extremely various technical aspects. Thus, education offered by the Special Master is extremely important in the industry since it trains system engineers in astronautics."@en . . "2"@en . "FALSE" . . "Master"@en . "Thesis" . "no tuition, other costs may apply" . "no data"@en . "no tuition, other costs may apply" . "None" . "The Special Master of Aerospace Engineering leads to the following career opportunities\n\nin the industry: system engineer for industrial aerospace projects, engineer for automatic and robotic systems,operator of systems for remote sensing, observation, and surveillance\nsupervisor of space missions, including launch operations and ground operations for tracking, remote control, remote sensing, and data processing expert for engineering aspects of the effects of space environment on human beings and on parts of aerospace systems, consultant for strategic and decisional processes of space agencies. \nin research centers: researcher in space systems, researcher in the development of innovative materials for astronautics, researcher in astrodynamics and control of aerospace systems, expert for scientific missions for exploration of solar system.\nin the area of education and cultural activities: instructor for industry and military staff, disseminator of aerospace culture"@en . "no data" . "FALSE" . "Upstream"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .