. "Avdasi 1: fundamentals of aerospace engineering"@en . . "10.00" . "Unit Information\nThis unit introduces students to the fundamental concepts of aircraft aerodynamics, flight performance theory and practice as well as seeking to foster a working understanding of specialised information, power, environmental, mass transfer, structural and control systems utilised on contemporary aerospace vehicles and fluid-dynamic equipment.\n\nThe unit aims to develop the ability to solve problems by introducing the fundamental concepts and demonstrating how these are applied to specific problems, as well as an appreciation of the concepts of aircraft flight and the ability to perform calculations on aircraft performance.\n\nYour learning on this unit\nUpon successful completion of this unit, students will be able to:\n\nexplain important aspects of flight, in particular basic aerodynamic characteristics and the conventional performance of fixed-wing aircraft;\ncalculate and analyse performance of aircraft and fluid-dynamic machinery;\ndescribe the systems that make up modern aerospace vehicles;\nexplain design processes that are employed in the aerospace industry;\nexplain the environmental impact of aerospace operations." . . "Presential"@en . "TRUE" . . "Others"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "BEng in Aerospace Engineering"@en . . "https://www.bristol.ac.uk/study/undergraduate/2024/aerospace/beng-aerospace-engineering/" . "180"^^ . "Presential"@en . "This three-year course covers a broad range of subjects organised into three streams:\n\naerodynamics\ndynamics and control\nstructures and materials.\nThese subjects are specialised from year one and are taught with aerospace applications and examples.\n\nThe first two years are devoted to core concepts, taught via lectures and backed up by practical experience through coursework and lab work. Further material, such as space applications and aviation operations, are covered in specialist units.\n\nYou will also learn skills that cross all the streams, such as computing, systems engineering and design. There is extensive mathematical content throughout.\n\nThe diversity of topics makes this a challenging degree but the reward is a uniquely broad education."@en . . "3"@en . "FALSE" . . "Bachelor"@en . "None" . "9250.00" . "British Pound"@en . "31300.00" . "None" . "The Royal Aeronautical Society (RAeS) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as an Incorporated Engineer and partially meeting the academic requirement for registration as a Chartered Engineer."@en . "1"^^ . "FALSE" . "Upstream"@en . . . . . . . . . . . . . . . . . . .