. "Organic geochemistry"@en . . "7.5" . "Course goals\n \n \nTo provide detailed insights into the molecular processes that affect organic matter which becomes part of the geosphere. The products formed and preserved are discussed with reference to diagnostic signals, e.g. molecular and isotope proxies, relevant to fossil fuel formation, palaeoenvironmental - and palaeoclimatic reconstructions (i.e. Molecular palaeontology).\n\nPlease note: This course will be taught compressed in a full time format with daily lectures/practicals/presentations.\nContent\nBiochemistry, Organic molecules and Sources of organic matter: Chemical evolution of organic molecules, isotopes, Phylogenetic tree of life, Membranes: Lipid biochemistry, different lipids, i.e. fatty acids, alkanes, acyclic isoprenoids, steroids, terpenoids; Macromolecules: sugars, proteins and peptides, DNA and RNA, resins, lignins, biopolyesters, biopolymers.\nPreservation and the quality of organic matter: Chemical stability versus depositional environment, chemical taphonomy; Preservation models: neogenesis, selective preservation, in-situ polymerization; Export productivity, Oxygen exposure time (OET); Marine versus terrigenous sources; Preservation versus production; Sulphur and Oxygen incorporation, Lignin, soil organic matter.\nMolecular palaeontology: Biomarkers: molecular markers based on carbon skeleton, position and nature of functional groups and/or stable carbon isotope composition. Biological markers as indicators of evolution of Life on earth. Biomarkers in relation to the phylogenetic tree of life; Age-related biomarkers: Molecular proxies for palaeoenvironmental and palaeoclimate reconstructions: sea surface temperatures, photic zone anoxia, anaerobic methane oxidation, C3/C4 vegetation shifts, atmospheric pCO2 changes.\nApplied geochemistry in the industry: Diagenesis, catagenesis, Diagenetic transformation reactions; Chemical transformation reactions during catagenesis; Coalification; Oil and gas formation; biomarkers as indicators for thermal maturity, oil-source rock correlation and biodegradation; future fuels." . . "Presential"@en . "TRUE" . . "Other Chemistry Kas"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Master of Earth, Life and Climate"@en . . "https://www.uu.nl/en/masters/earth-life-and-climate" . "120"^^ . "Presential"@en . "Topics you will study during this two-year programme include amongst others the origin and evolution of life, major transitions in earth’s history, dynamics of sedimentary systems, carbon sources and sinks, biogeochemical and geochemical cycles, climate change and its impact on natural environments such as glaciers, ice sheets, lakes, groundwater, wetlands, estuaries, and oceans. You will learn state-of-the-art reconstruction methods, modelling techniques, and laboratory experiments that has been developed and applied in a wide range of earth and beta science disciplines, such as biogeology, palaeontology, palynology, sedimentology, stratigraphy, environmental geochemistry, organic geochemistry, hydrology, physical geography, geology, biology, climate dynamics, marine sciences and palaeoceanography. You will utilise these skills in your own research project or internship in preparation for an international career in applied or fundamental research."@en . . . . . "2"@en . "FALSE" . . "Master"@en . "Thesis" . "2314.00" . "Euro"@en . "21736.00" . "Mandatory" . "Many graduates from the Earth, Life and Climate programme go on to find employment in research. Typical professional profiles of graduates include Geologist, Sedimentologist, Biogeologist, Physical Geographer, Stratigrapher, Paleoceanographer, Palaeoclimatologist, Geochemist and Hydrologist."@en . "4"^^ . "TRUE" . "Downstream"@en . . . . . . . . . . . . . . . . . . . . .