. "Videometry and contactless measurement"@en . . "no data" . "Anotation:\r\n\r\nThis course focuses on CCD and CMOS video sensors, and optoelectronic sensors in general and their use in contactless videometric measurement systems. Further optical radiation, its features, behavior and its use for acquiring object parameters, optical projection system, design of measurement cameras and processing of their signal will be presented. Students will design, realize and debug an independent project - 'Optoelectronic reflective sensor', during labs.\r\nStudy targets:\r\n\r\nTeach: Basics - optoelectronic sensors and optical projection system\r\nContent:\r\n\r\nThis course focuses on CCD and CMOS video sensors, and optoelectronic sensors in general and their use in contactless videometric measurement systems. Further optical radiation, its features, behavior and its use for acquiring object parameters, optical projection system, design of measurement cameras and processing of their signal will be presented. Students will design, realize and debug an independent project - 'Optoelectronic reflective sensor', during labs.\r\nCourse outlines:\r\n\r\n1.\t \tIntroduction to videometry and contactless measurement, optical radiation and its behavior\r\n2.\t \tSemiconductor radiation detectors, photodiodes, semiconductor radiation sources, LED, LASER\r\n3.\t \tOptoelectronic position sensors, triangulation sensors, laser scanning sensors, laser rangefinders\r\n4.\t \tSensors for infrared radiation, ultrasound sensors for measurement and robotics\r\n5.\t \tMOS capacitor as an optical radiation detector, CCD shift register, CCD line sensors\r\n6.\t \tCCD area sensors, arrangement, principle of operation (Full Frame, Frame Transfer, Interline Transfer)\r\n7.\t \tCCD sensors, features and limitation, CCD cameras and their function\r\n8.\t \tCMOS image sensor, construction, arrangement, features and its control\r\n9.\t \tMicrowave radar sensors, position measurement\r\n10.\t \tOptical projection systems and their design, resolution limitation\r\n11.\t \tVideosignal standards, videosignal digitalization and computer interfacing, digital camera interfaces\r\n12.\t \tOptical radiation sources, lighting sources for measurement, structured light sources, scene lighting\r\n13.\t \tDesign of compact CMOS cameras with internal image processing for positional control\r\n14.\t \tDesign of automatic videometric inspection systems\r\nExercises outline:\r\n\r\nIn the first section of labs, students will acquaint themselves with basic optoelectronic sensors by measuring their parameters. Using this knowledge they will independently solve a project: Optoelectronic reflective sensor. This will include design of electronic circuits, selection of component parameters and simulation of the whole system. Then the students will realize and debug this project and measure its parameters. An important part of this will be creating documentation throughout the project. The complete project will be presented and defended in class. The final section of labs will deal with image sensor, cameras, optical projection systems and other sensors for contactless measurement." . . "no data"@en . "TRUE" . . "Others"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Master of Aerospace Engineering"@en . . "https://aerospace.fel.cvut.cz/overview" . "120"^^ . "Presential"@en . "This is a Master degree study programme focused on education and training of nowadays and/or future specialists in the field of aeronautical and space systems and technologies. Although the programme is taught at the Faculty of Electrical Engineering, it can be considered as a whole-university program, because of a strong link with the Faculty of Mechanical Engineering where several compulsory courses are given. Even if the program puts the emphasis on aerospace fields, the education is supported by a broad knowledge of electronics, embedded systems and their design, programming and usage. Moreover, the program curriculum is extended by soft skills’ training. The program content is in accordance with prestigious European aerospace universities and thus provides good competitive basis for graduates’ future employment in variety of private and state companies and institutions.\nThe study is hands-on focused. Students can thus develop their practical knowledge via practical oriented courses and individual projects. A full 4th semester of the study is dedicated to a diploma thesis which can also be solved in cooperation with industry and abroad. The CTU and program itself have strong links with European aerospace universities via PEGASUS Network which supports student exchange program and getting experience from other country.\nThe program introduces current state-of-the-art in the field of aerospace but expects graduates to be fluent also in the future technologies and systems."@en . . . "no data"@en . "FALSE" . . . "Master"@en . "Thesis" . "Not informative" . "no data"@en . "Not informative" . "Recommended" . "aircraft and spacecraft engineering, avionics, integrated systems with their subparts in terms of sensors, data processing, buses, communication, and integration, radio systems, flight control, inertial-GNSS-decision based navigation, trajectory planning."@en . "1"^^ . "FALSE" . "Upstream"@en . . . . . . . . . . . . . . . . .