. "Other Physics Kas"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "Foundations of physics 1"@en . . "40.0" . "**Prerequisites** \nA-Level Physics and A-Level Mathematics.\n\n**Corequisites**\n(Single Mathematics A (MATH1561) and Single Mathematics B (MATH1571)) or (Linear Algebra I (MATH1071) and Calculus I (MATH1061)).\n\n**Aims**\n* This module is designed primarily for students studying Department of Physics or Natural Science degree programmes.\n* It provides the minimum core physics required for progression to Level 2 physics modules and should be taken by all students intending to study physics beyond Level 1.\n* It provides courses in classical aspects of wave phenomena and electromagnetism, and introduces basic concepts in Newtonian mechanics, quantum mechanics, special relativity and optical physics.\n* The module provides students with practice in the informal discussion of scientific ideas within a small group.\n* It also provides students with opportunitites to develop their study skills. Such skills include being able to understand the difference between University and A-level physics; understanding how to engage with the course material efficiently and developing problem-solving strategies.\n* It provides students with practice at synthesising and proposing new problems based on their understanding of the knowledge base.\n* It will enable students to analyse a physical system and to formulate a piece of computer code that substantially solves a problem or models the behaviour.\n\n**Content**\nThe course will contain the following fundamental topics.\n* Mechanics: Motion in a straight line. Motion in 2 or 3 dimensions. Newton's Laws. Work and Kinetic Energy. Potential Energy and Energy Conservation. Momentum, impulse, and collisions. Angular velocity and angular acceleration. Rotational kinetic energy, moment of inertia. Torque. Angular momentum. Combined linear and angular motion. Equilibrium, centre of mass. Gravitation: force and energy. Kepler’s laws. Periodic motion and harmonic oscillators.\n* Waves and optics: Mechanical waves and the wave equation. Wave velocity and energy transport. Interference of waves and normal modes. Sounds waves and the Doppler effect. The nature and propagation of light. Refraction, polarization, Snell and Malus law. Geometrical optics and ray tracing. Lenses and mirrors. Interference of light. Young's slits. Diffraction.\n* Electricity and magnetism: Coulomb's law. Electric fields due to point charges. Charge distributions. Electric flux and non-uniform electric fields Gauss' law. Work done by and against electrostatic forces. Electric potential and potential energy. Capacitance. Potential energy stored in charged capacitors. Magnetic field and magnetic forces. Magnetic forces on current. Sources of magnetism: the Biot Savart Law. Ampere's law. Magnetic materials. Electromagnetic induction. Inductance. Potential energy stored in inductors. EM waves. Maxwell's equations.\n* Circuits: DC and AC Electrical currents. Electromotive Force. Electrical resistance. Electrical power. Kirchoff's rules. Resistors in series and parallel. RL, LC and LCR circuits.\n* Special relativity: Invariance of Physical Laws. Relativity of Simultaneity. Relativity of time intervals. Relativity of length intervals. The Lorentz transformations. Relativistic momentum. Relativistic work and energy.\n* Quantum mechanics: Photoelectric Effect. X-ray production. Electron Waves. Wave-particle duality. Probability and Uncertainty. Atomic spectra and the Bohr model of the Atom. Wavefunctions and the 1-dimensional Schrödinger equation. Wave packets, stationary states and time dependence. Interpretation of wavefunction. Particle in a one-dimensional box. Potential wells. Potential barriers and tunnelling. Harmonic oscillator.\n* Oscillations: Simple harmonic motion. Damped harmonic motion. Driven harmonic motion. Resonance (width, Q-factor, phase). Applications in mechanics, LCR circuits, atomic transitions; nuclear reactions; elementary particle reactions. Collisions, conservation and fields: Centre of momentum frame; rocket motion; relativistic collisions; conservation in fluid flow (continuity, Bernoulli's equation). Continuity in electromagnetism. Gauss' law in electromagnetism and gravity. Conservative force fields.\n* Collisions, conservation and fields: Centre of momentum frame; rocket motion; relativistic collisions; conservation in fluid flow (continuity, Bernoulli's equation). Continuity in electromagnetism. Gauss' law in electromagnetism and gravity. Conservative force fields.\n\n**Learning Outcomes**\nSubject-specific Knowledge:\n* Students will be able to apply knowledge of the concepts and principles of the following foundational areas of physics to unfamiliar problems: Mechanics; Waves and optics; Circuits; Oscillations; Electromagnetism; Quantum mechanics; Special Relativity.\n* Students will be able to formulate and solve equations of motion for particles to describe and predict their dynamics. Students will be able to apply conservation laws in applicable circumstances as an alternative method.\n* Students will be able to describe and predict the behaviour of light using both (i) the ray picture of geometrical optics and (ii) simple physical optics.\n* Students will be able to analyse a simple circuit driven by DC or AC using circuit theory.\n* Students will be able to analyse physical systems in terms of charges and electromagnetic fields and predict the behaviour of charges and fields using the relevant concepts.\n* Students will be able to describe the quantum-mechanical behaviour of particles in simple potentials. They will be able to predict departures from classical behaviour.\n* Students will be able to apply the Lorentz transformations in simple situations and describe the behaviour of dynamic systems at relativistic energies. They will be able to predict departures from non-relativistic behaviour.\n* Students will be able to outline areas of physics where harmonic oscillations govern the behaviour. They will be able to analyse and predict the behaviour of general oscillating systems including in unfamiliar contexts.\n* Students will be able to identify and apply conservation laws in analysing and describing physical systems. This includes applications of conservation laws to collision problems and the concept of a conservative field.\n\nSubject-specific Skills:\n* Students will become adept at problem solving and be able to analyse a simple physical problem and formulate a mathematical description of it. In some cases students will be required to manipulate or solve the resulting set of equations in order to explain or predict the system's behaviour.\n* Students will be able to sketch and graph the response of a physical system to a given set of initial and boundary conditions.\n* Students will be able to recognise a key piece of fundamental physics (such as resonance or conservation of momentum) in a variety of contexts and apply a similar detailed analysis irrespective of an unfamiliar context.\n\nKey Skills:\nModes of Teaching, Learning and Assessment and how these contribute to the learning outcomes of the module\n* Teaching will be lectures, supported by tutorials.\n* The lectures will provide the means to give a concise, focused presentation of the subject matter of the module.\n* The lecture material will be explicitly linked to the contents of a single recommended textbook for the module, thus making clear where students can begin their private study.\n* When appropriate, the lectures will also be supported by the distribution of written material, or by information and relevant links online.\n* Students will be able to obtain further help in their studies by approaching their lecturers, either after lectures or at other mutually convenient times (the Department has a policy of encouraging such enquiries).\n* Regular problem exercises will give students the chance to develop their theoretical understanding and problem-solving abilities.\nThese problem exercises will form the basis for discussions in tutorial groups of typically six students.\n* The tutorials will also provide an informal environment for students to raise issues of interest or difficulty.\n* Student performance will be summatively assessed through written examinations, an open-book examination and an online test, and formatively assessed through problem exercises, progress tests and a Collection examination.\n* The written examinations, open-book examination and online test will provide the means for students to demonstrate their acquisition of subject knowledge and the development of their problem-solving skills.\n* The problem exercises, progress tests and Collection examination will provide opportunities for feedback, for students to gauge their progress, and for staff to monitor progress throughout the duration of the module.\n\nMore details at: https://apps.dur.ac.uk/faculty.handbook/2023/UG/module/PHYS1122" . . "Presential"@en . "TRUE" . . "Master in Physics and Astronomy"@en . . "https://www.durham.ac.uk/study/courses/physics-and-astronomy-ff3n/" . "120"^^ . "Presential"@en . "**Course details**\nIf you are fascinated by the relationship between mathematics, the cosmos and the scientific world this MPhys could be for you. This integrated Master's degree is the first step towards Chartered Physicist status. It will suit those looking for an accredited course that leads to higher level education or a research role in physics, while also providing the knowledge, analytical and problem-solving skills for a career in the sciences, engineering, finance or IT.\n\nPhysics degrees at Durham offer a high level of flexibility. We offer four Institute of Physics accredited courses - MPhys qualifications in Physics, Physics and Astronomy, and Theoretical Physics and the three-year BSc in Physics - which follow the same core curriculum in Year 1.\n\nSubject to the optional modules chosen, it is possible to switch to one of the other courses until the end of the second year. You can also apply for a one-year work placement or study abroad opportunity with one of our partner organisations, increasing the course from four years to five or substituting the existing Year 3.\n\nThe first year lays the foundation in physics theory, mathematical skills and laboratory skills that you will need to tackle more complex content later in the course. From Year 2 the focus on astronomy and astrophysics increases.\n\nAs you progress through the course, learning is more closely aligned to real-world issues through project work and optional modules that are tailored to your interests and aspirations. Your knowledge is further extended with a project based on a live research topic, and higher-level modules which take your study of physics and astronomy to a greater depth.\n\n**Course structure**\n*Year 1*\nCore modules:\nFoundations of Physics introduces classical aspects of wave phenomena and electromagnetism, as well as basic concepts in Newtonian mechanics, quantum mechanics, special relativity and optical physics.\n\nDiscovery Skills in Physics provides a practical introduction to laboratory skills development with particular emphasis on measurement uncertainty, data analysis and written and oral communication skills. It also includes an introduction to programming.\n\nExamples of optional modules:\nSingle Mathematics\nLinear Algebra\nCalculus.\n\n*Year 2*\nCore modules:\nFoundations of Physics A develops your knowledge of quantum mechanics and electromagnetism. You will learn to apply the principles of physics to predictable and unpredictable problems and produce a well-structured solution, with clear reasoning and appropriate presentation.\n\nFoundations of Physics B extends your knowledge of thermodynamics, condensed matter physics and optics.\n\nStars and Galaxies introduces astronomy and astrophysics. You will develop an understanding of the basic physics of stellar interiors and learn why we see stars of differing colours and brightness. The module extends your knowledge of pulsating and binary stars and introduces galactic and extragalactic astronomy.\n\nMathematical Methods in Physics provides the necessary mathematical knowledge to successfully tackle the Foundations of Physics modules. It covers vectors, vector integral and vector differential calculus, multivariable calculus and orthogonal curvilinear coordinates, Fourier analysis, orthogonal functions, the use of matrices, and the mathematical tools for solving ordinary and partial differential equations occurring in a variety of physical problems.\n\nLaboratory Skills and Electronics builds lab-based skills, such as experiment planning, data analysis, scientific communication and specific practical skills. It aims to teach electronics as a theoretical and a practical subject, to teach the techniques of computational physics and numerical methods and to provide experience of a research-led investigation in physics in preparation for post-university life.\n\nExamples of optional modules:\nTheoretical Physics\nPhysics in Society.\n\n*Year 3*\nCore modules:\nFoundations of Physics A further develops your knowledge to include quantum mechanics and nuclear and particle physics. You will learn to apply the principles of physics to complex problems and produce a well-structured solution, with clear reasoning and appropriate presentation.\n\nFoundations of Physics B extends your knowledge to include statistical physics and condensed matter physics.\n\nPlanets and Cosmology explains the astrophysical origin of planetary systems and the cosmological origin of the Universe. You will learn about the formation and workings of our Solar System, its orbital dynamics and the basic physics of planetary interiors and atmospheres.\n\nThe Computing Project is designed to develop your computational and problem-solving skills. You work on advanced computational physics problems using a variety of modern computing techniques and present your findings in a project report, poster and oral presentation.\n\nExamples of optional modules:\nTeam Project\nAdvanced Laboratory\nMathematics Workshop\nPhysics into Schools\nTheoretical Physics\nCondensed Matter Physics\nModern Atomic and Optical Physics.\n\n*Year 4*\nCore modules:\nThe research-based MPhys Project provides experience of work in a research environment on a topic at the forefront of developments in a branch of either physics, applied physics, theoretical physics or astronomy, and develops transferable skills for the oral and written presentation of research. The project can be carried out individually or as part of a small group in one of the Department's research groups or in collaboration with an external organisation.\n\nAdvanced Astrophysics covers astronomical techniques and radiative processes in astrophysics. This module provides a working knowledge of the advanced optical techniques used in modern astronomy and of the radiative processes that generate the emission that is studied in a wide range of astronomical observations.\n\nTheoretical Astrophysics examines cosmic structure formation and general relativity. This module provides an overview of our current understanding of the formation and evolution of cosmic structure and an introduction to Einstein's general theory of relativity.\n\nExamples of optional modules:\nAtoms, Lasers and Qubits\nAdvanced Theoretical Physics\nAdvanced Condensed Matter Physics\nParticle Theory\nTheoretical Physics\nCondensed Matter Physics\nModern Atomic and Optical Physics.\nAdditional pathways\nStudents on the MPhys in Physics and Astronomy can apply to be transferred onto either the 'with Year Abroad' or 'with Placement' pathway during the second year. Places on these pathways are in high demand and if you are chosen you can choose to extend your course from four years to five, or substitute the existing Year 3.\n\n**Placement**\nYou may be able to take a work placement. Find out more in https://www.durham.ac.uk/study/undergraduate/how-to-apply/study-options/placements/.\n\nModules details: https://apps.dur.ac.uk/faculty.handbook/2023/UG/programme/FF3N"@en . . . "4"@en . "FALSE" . . "Master"@en . "Both" . "9250.00" . "British Pound"@en . "30500.00" . "Recommended" . "**Career opportunities**\n*Physics*\nWe seek to develop the practical and intellectual skills sought by employers and we are regularly ranked among the country's top performers for graduate employment. Our graduates have progressed to careers in business, industry, commerce, research, management and education, and typically more than fifth of our graduates go on to study for higher degrees.\n\nThe Department also has an impressive track record of spin-out technology companies that commercialise our knowledge in areas of semiconductors, composites and advanced instrumentation. Examples of high-profile employers include BT, Procter & Gamble, Rolls Royce and BAE Systems.\n\nOf those students who graduated in 2019:\n83% are in paid employment or further study 15 months after graduation across all our programmes\n\nOf those in employment:\n81% are in high skilled employment\nWith an average salary of £34,000.\n\n(Source: HESA Graduate Outcomes Survey. The survey asks leavers from higher education what they are doing 15 months after graduation. Further information about the Graduate Outcomes survey can be found here www.graduateoutcomes.ac.uk)"@en . "2"^^ . "TRUE" . "Downstream"@en . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .