Theory and operations of formation flying  

Introduction (current and future missions involving formation flying). Linear circular keplerian case (Hill-ClohessyWiltshire equations, curvilinear vs Cartesian coordinates; periodicity). Linear elliptic keplerian case (TschaunerHempel, Melton, Yamanaka equations; periodicity). Mission to a comet with highly elliptic orbit and residual gravitational field. Linear circular perturbed case (J2 effect and special inclinations, drag effect, advanced linear models). Nonlinear dynamics (Newton approach, Lagrange approach, energy matching). Relative motions in terms of differential orbital elements. Relative attitude dynamics. Formation flying control (LQR, discrete LQR, PWM, impulsive, artificial potential). Formation flying navigation (RF, GPS, laser ranging, visual navigation). A case of formation flying: remote sensing missions. Orbital configuration. Lazy and tight formations. Rendezvous. The phases of a rendezvous mission. Approach safety and collision avoidance. The drivers for the approach strategy (location and direction of target capture, range of sensors, Sun illumination, communication windows). Docking. Mating systems. Special features of the GNC system for rendezvous and docking (mode sequencing and equipment engagement, fault identification and recovery concepts, remote interaction with the automatic system, automatic GNC system with manin-the-loop). Special cases of formation flying. Tethered formations and space webs. Swarms of spacecraft
Presential
English
Theory and operations of formation flying
English

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or HaDEA. Neither the European Union nor the granting authority can be held responsible for them. The statements made herein do not necessarily have the consent or agreement of the ASTRAIOS Consortium. These represent the opinion and findings of the author(s).