The structure and dynamics of materials studied with x-rays and neutrons  

Detailed understanding of the atomic scale structure and dynamics of materials is a crucial prerequisite for understanding their physical properties, and therefore also for the design of new materials of technological interest. Examples include components of new drugs to combat diseases, superconductors and materials for solar energy harvesting and data storage. Neutron and X-ray scattering are complementary methods that allow investigations of structure and dynamics. The course introduces a series of experimental techniques in neutron and X-ray scattering that allow the determination of all relevant structural parameters for molecules, amorphous systems and crystals, including the magnetic structure. Furthermore, elementary excitations of the relevant structural, electronic and magnetic degrees of freedom (such as changing molecular bonds, phonons and spin waves) can be studied in great detail, either directly in the ultrafast time domain or via their spectroscopic signatures. X-ray and neutron imaging creates 3 dimensional maps of the local structure within materials. Hence, these techniques provide the means to uncover the fundamental mechanisms that govern the connections between structure and function for a wide range of materials and over a wide range of time and length-scales. The overall goal of the course is to provide a broad understanding of modern X-ray and neutron scattering, and a thorough introduction to the practical use of these techniques in the study of the structure and dynamics of materials. The importance of neutron and x-ray scattering is underscored by the very large investments made by the Danish state in the construction of the European Spallation Source (ESS) and MAX-IV in Lund, Sweden, and in the European XFEL in Hamburg, Germany. The Technical University of Denmark is strongly involved in method development, design and construction of instruments, as well as scientific use of all three facilities.
Presential
English
The structure and dynamics of materials studied with x-rays and neutrons
English

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or HaDEA. Neither the European Union nor the granting authority can be held responsible for them. The statements made herein do not necessarily have the consent or agreement of the ASTRAIOS Consortium. These represent the opinion and findings of the author(s).