Advanced concepts in machine learning  

This course will introduce a number of advanced concepts in the field of machine learning such as Support Vector Machines, Gaussian Processes, Deep Neural Networks, etc. All of these are approached from the view that the right data representation is imperative for machine learning solutions. Additionally, different knowledge representation formats used in machine learning are introduced. This course counts on the fact that basics of machine learning were introduced in other courses so that it can focus on more recent developments and state of the art in machine learning research. Labs and assignments will give the students the opportunity to implement or work with these techniques and will require them to read and understand published scientific papers from recent Machine Learning conferences. Prerequisites Desired Prior Knowledge: Machine Learning Recommended reading Pattern Recognition and Machine Learning - C.M. Bishop; Bayesian Reasoning and Machine Learning - D. Barber; Gaussian Processes for Machine Learning - C.E. Rasmussen & C. Williams; The Elements of Statistical Learning - T. Hastie et al. More information at: https://curriculum.maastrichtuniversity.nl/meta/465009/advanced-concepts-machine-learning
Presential
English
Advanced concepts in machine learning
English

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or HaDEA. Neither the European Union nor the granting authority can be held responsible for them. The statements made herein do not necessarily have the consent or agreement of the ASTRAIOS Consortium. These represent the opinion and findings of the author(s).